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A one- and two-dimensional nonlinear pulse interaction
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The peculiar intergrability of the Davey-Stewartson equation allows us to analytically find solutions describ-
ing the simultaneous formation and interaction of one-dimensional and two-dimensional localized coherent
structures. The predicted phenomenology allows us to address the issue of interaction of solitons of different
dimensionality that may serve as a starting point for the understanding of hybrido-dimensional collisions
recently observed in nonlinear optical media.

PACS numbgs): 05.45.Yv, 52.35.Mw, 42.81.Dp

Nonlinear wave propagation occurs in many differentseparately[9]. After showing that the system can actually
physical systemge.g., water waves and optjcand leads to  support a hybrido-dimensional structure, we are able to de-
a myriad of different interesting and useful phenomena thative fully analytical solutions for the needle-stripe interac-
are in striking contrast to linear propagation effefld.  tion, making use of the “dressing” theorefi0]. For zero-
Among these, the emergence of localized nondispersive c@ngle collisions we find periodic “breathing,” hinting at the
herent pulses, solitons, that do not suffer deformation anf?ossible existence of stationary hybrid states. For angled in-
that undergo elasticlike collisions, have attracted much atterferaction, we find that the two components, needle and stripe,
tion [2] Perhaps their most pecu"ar physica| feature is assd_etain their Original |dent|ty and localization after the colli-
ciated with their interaction dynamics. Whereas classicapion, even though the needle changes shape.
soliton experimental studies have been confined to lower di- The DS equation is a generalization of the NLS equation
mensionalone-dimensional, £1D) systems, where diffrac- . )
tion occurs in one dimension only, in the last decade experi- iQ,+ Qut¢|Ql*Q=0, (1)

ments in nonlinear optics have allowed the stable - . . . 5 .
observation of both 21D solitons in a bulk environment, Where the binding self-interaction potentiak|Q|* (c being

known as stripe or wall solitons, and two-dimensiorl a positive parametglis local and responsible for the exis-

+1D) needle solitons, where linear deformation is halted inten_ce of Iocallzec_i, stable, nond|sper3|ye pult¥s,z). DS
solitons are solutions of the DS equation

two pulse dimensiong3]. Surprisingly, such phenomena can
be observed in the same nonlinear medisimultaneously
and have permitted the observation of a new solitonic pro-
cess: the collision and interaction of two solitons of different .
dimensionality, one being a needle, the other a stripe, in aV(X,y,Z):U(X,Z)+U(y,Z)‘i‘(l/Z){f (IE(s,y,2)|2),ds
photorefractive crystdl4]. Furthermore, recent experiments —o

in near-resonant gases have allowed the study of interaction

between a vortex and a dark stripe soliféh To our knowl- + fy (|E(x,5,2)|?),ds
edge a stripe-needle collision has never been theoretically —w

investigated, nor in optical physics, or in any other context

for that matter. The description, apart from encountering thavhere the binding potential(x,y,z) is now anonlocal ex-
“standard” difficulties connected to nonlinear partial differ- pression of the intensityE|?, andv and u are two given
ential equationgonly rarely integrablg poses a number of arbitrary binding one-dimensionéle.,v on thex axis andu
modeling riddles. To name one, the model should supporon they axis) potentials(*waveguides”) which are respon-
both stripe and needle solutions, and most importantlysible for the formation of localized pulsé¥x,y,z). These
needle-stripe hybrid solutions, a circumstance that even in itgrould exist even if the self-interaction terms wenet
linear realization poses peculiar issU&. Even more, al- presenfsay, in the linearized limit of Eq(2)]. Thus, in the
though a numerical investigation of a Kerr-saturated modetwo-dimensional case, solitons are formed by “external
has been performgdt], in order to obtain a clear and com- waveguides,” whereas the interaction is mediated by the
plete picture, we would like an actual integrable nonlineamonlinear terms. To emphasize this difference with respect to
model. In this Rapid Communication we tackle the hybridNLS solitons, DS solitons are sometimes referred to as “dro-
collision in the frame of the Davey-Stewartson equationmions” [11]. As opposed to the full two-dimensional local-
(DS) [7], a generalization of the nonlinear ScHilmger equa- ization, in the important case of vanishing external poten-
tion (NLS) [8], that is known to allow for the explicit ana- tials,v=0 andu=0, solitons can be localized in one single
lytical description of stripe solitonsind needle solitons, direction, say in the transverse coordinate=x cosd

iE,+ Eyo+ Eyy+ VE=0, (2a)

: (2b)
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+y sind. These solutions of Eq2), E=E(T,z), are actu- The linear approximation of Eq3), which is obtained by
ally also solutions of Eq(1) with c=1/sin(29) for 0<®  replacing the matriA with 2R, is just the linear superposi-
<m/2, and represent straight walls in they) plane. This tion of the two solutionsf¥(x,2)g")(y,2), j=1,2, of the
equivalence can be used to identify the physical lengths inlinearized DS equatiofthat is the Schrdinger equation with
volved in obtaining dimensionless variables throughout thed separable potentjalFurthermore, the expression which is
paper, namely, the diffraction length and the nonlinear lengttpbtained by setting in Eq3) a,=0 (a;=0) is a solution of
[8]. Note that NLS soliton collision§12] and dromion col-  Ed.(2) and, throughout the paper, we associate it the
lisions have been extensively investigated by means of muwall solution and withj =2 the dromion(ball) solution. With
tisoliton solutions, their differences being well-kno\y. this terminology, therefore, Eq3), with definitions of Egs.

In terms of the DS equatiofEq. (2)], the hybrid collision  (4) and(5), describes the interaction of a wall and a ball, and
under study is that of a wall soliton and a needle dromionour task is to display the main properties of this collision by
Taking advantage of the fact that tt@ne-dimensionalNLS analyzing both graphically and analytically this formula.
solitons appear themselves as wall solutions in thg/)( To highlight the relevant aspects of the hybrid nonlinear
plane of the DS equatiofas pointed out aboyewe consider interaction we assume that=v(x) andu=u(y) be z inde-
exact solutions of Eq2) which are the nonlinear superposi- pendent. Thus function&(x,z) andg®)(y,z) are assumed
tion of a wall (NLS 1D soliton in the transverse coordinate to be stationary solutions of the SchHinger equation,

T) and a ball(dromion. namely,
A variety of solutions of the DS equation have been al- _ ~
ready constructed, including the one-wall solution, using f0(x,2) = expAx+ir?2) fI(x,\),
various techniques, such as Backlund transformatjas$ 0 PRI
bilinearization[14], and the inverse spectral methi@]. Our gV (y,z)=expluy+iunz)gV(y,un), (6)

approach here is based on a dressing form@Ja0|, which
follows from the spectral transform method of constructingWheLe)‘ andy are complex parametefsee belowand func-

solutions which vanish at infinity in all directionsay as t|onsf(i? andg") depend on the particular potentialandu,
x2+y2 ) but whose validity can be easily recognized to respectively. For instance, the pure wall solution is obtained
include also wall-type solutions. This formuldor details DY settinga;=2ky2 sind exp(iyo—kTo), a,=0, v=u=0,

and generalizations, see REf0]) reads fU=gM=1,x=a+ia, u=b+ip and can be expressed as
E=exdi(B cosd—a sin 3)L]Ey\ <(T,2), where L
E=ApnfOgD+ALFDg@ 4 A, fAgD4A,f2g@) =y cosd—x sin 9 is the (longitudina) coordinate along

(3) the wall direction,a=k cosd, b=k sin 9 (¢ being the
angle between the wall and thg axis) and Eyg
where f0(x,2) and g0)(y,2), j=1,2, are solutions of the =Kv2sin ¥ expi[ST2—z(a’+B°—k?)+ yol}/coshik(T
(linean Schralinger equation$f§”+f§{2+uf(j)zo and, re- —Ty—S2] is the standar.d expression of the NLS soliton in
spectvely, igl)+of) +ug0 =0, and the functons e transverse coornater, whle ¢ 20 cor)
Ajn(x.y.2) are the entries of the>22 matrix the propagation direction, ang, and T, are arbitrary real
parameters. As is well-known, a characteristic feature of the
one-dimensional solitons is that their width and amplitude
are related to each other, in contrast to the case of dromions
R being a diagonal constant matrik;,=a;d;,, where its (see below
entriesa; and a, are two complex parameters, while the ~ As mentioned above, ball-like solutions necessitate
Hermitian matrices~(x,z) and G(y,z) are defined by the of nonvanishing potentialyy and u. With the purpose
integral expressions of analytically solving the corresponding Schiger
equation, we make two different choices of potentials,
and show that the main features of the processes we describe
are not strongly dependent on the potential. The best
known dromion solution is obtained with;=0, a,=A
(arbitrary complex constant v=—2p?/cost(px), u=
G'n:Jy g¥(s,2)9M* (s,2)ds. (5) —209?/costt(qy) (p and'q being positive real parameters
' — and reads E=A exdi(p?+q?)z]/{4 coshpx coshqy[ 1

A=2R(1+GR"F*R) 1, (4)

X .
Fin= f_ f)(s,2)f(M*(s,2)ds,
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FIG. 2. () Level plot of |E| for the wall solution for the valuep=1, q=2, a;=4, A=1.01+2i, and u=2.1+0.5; (b)—(e) corre-
sponding sections fdr =4, 2, —2, and—4, respectively, as a function dt

+|A|?(1+tanhpx)(1+tanhqy)/(64pg)]}. A  second but with the free parameterg, and T, replaced byy. and,
simple example of a dromion solution is obtainedrespectively, byT. (for L going to =«). The shiftsAT
for binding potentials that are Dirac distributions, =T, —T_ andAy=+vy,—vy_ turn out to have a simple ex-
namely, v=-2pd&(x), u=-2qd(y); in this case the plicit expression which is easily read out of the following
solution is E=A exdi(p2+qg?)zlexp(—p|x|—qly|)/  relations: expEkAT+iAy)=[(A+p)(x—a)/(A\—p)(u

[1+]|A|2/4pg)M (x,p)M(y,q)], with M(x,p)=1  +q)] for the first choice of the potentialdi.e., v
— 3 exp(—2px) if x>0, M(x,p)=3 exp(2px) if x<0. The =-—2p%cosh?(px), u=-2g%cosh?(qy)) and exp
level plot of |E| in the (x,y) plane for both these dromionsis (—kAT+iAy)=[1—-(a/x)]/[1—(p/\)] for potentialsv
shown in Fig. 1. =—-2pd(x), u=—2qd(y). For a completely symmetric

As a direct consequence of the nonvanishing external posetup in the coordinates andy, say p=q and A= u, the
tentialsv andu, the wall gets warped and its expression isshifts of phase and position vanish. We are now in a position
modified in the neighborhood of the origi=y=0 with  to discuss the solution of the DS E(®), which describes
respect to the expression we have given aboveuvferu interaction between ball and wall that we have separately
=0. This effect can be illustrated by explicitly computing the discussed above. This hybrid solution is obtained by insert-
wall solution for both choices of potentials and u intro-  ing functionsf) andg®) [see Eq(6)] in the general formula
duced above. The corresponding level plot is shown in Fig. 2f Eq. (3) and by performing the integrals of E¢p), con-
along with some cross-section profiles. These show that, atgtructing matrixA of Eq. (4). Integrals of Eq.(5) can be
large distance from the origin, the wall is an NLS soliton in analytically computed only for the Dirac distribution poten-
the transverse coordinale In fact, as the longitudinal coor- tials (i.e., for our second choice of potentials abpwehereas
dinateL goes to*oo, these asymptotic solitons turn out to be the asymptotic expressions for very lamean be derived for
merely shifted, with respect to each other, both in phase anboth choices of external potentials. While we omit detailed
position. Thus their expression is again the one given aboveomputations, we report the main properties of these solu-
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FIG. 3. Level plot of|E| for the dromion-wall solutior{with Dirac & function potentials for the valuesp=1, q=2, \=2, u=3, a,

=4, anda,=0.04 for whichS=0. The six pictures are obtained respectively forr(255) with n=0,1,2,3,4,5. The period is7#| 7|
= 7/4.
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FIG. 4. Level plot of|E| for the dromion-wall solutior{with Dirac & function potentials for parameter valuep=1, q=2, A=1.01
—2i, ©=2.1+0.5, a;=4, anda,=6, (a) atz=—8 and(b) at z=8.

tions. We first note that, since the binding potentialandu —q)/ (A +p)(n+Qq)] for the potentials v

do not “move” with z, also the dromion remains confined = —2p2/cqsh2(px), u=—2qg%cosh?(qy), and exp
around the origirk=y=0 for all values ofz, for a needle (~KATc+iAy)=[1—(p/\)][1—(a/u)] for the other
that enters perpendicularly to the,§) plane and propagates choice of the potentials,= —2p4&(x), u= —2q4(y). As for
along thez direction. On the contrary, the wall moves in the the ball, its shape changes considerably as a consequence of
(x,y) plane perpendicularly to its longitudinal direction with the collision, as |§qu|te+§ppare2nt in Fig. 4. Moreover, the
rate S=2(a cos 9+ B sin 9)=2(aa+ Bb)/k, which we total energyH= [T dx[Z dy|E|*, although conserved, is
assume to be nonpositiv&<0. In particular,S=0 is of infinite because of 'ghe wall component, and a conclu5|0r_1
special interest, this being the case in which the stripe anrab(gll;/t égii\fg d”?grr\;att'hoenb‘?fe;ieu%r%rgggsgnvségga(\:/aengg;g?bgg
the needle are parallel to each other. In such a situation, t ; : - . :
intensity |E|? ispa periodic function, depending oz only € conjecture that its energy does not change, given that a
h hy th . . ’d h shift of the phase and position of the cross section profile of
t_roqugr] 2_223)(&?352'1”32 S?ftli)s 22Iutig?1$g7fz?cr,1eWD grg ’Zja_ the wall does not change its energy density. In addition, this
tToﬁ beﬁaves therefgre ?ikétmeatherand its contour plc?t in conclusion agrees with the similar dromion energy conserva-

. e L tion found in the dromion-dromion collisiof®], if the con-

the (x,y) plane is shown in Fig. 3. The oscillation _frequency stant matrixR [see the definition of Eq4)] is diagonal, as it
n depends on the potentialsandu only through their bound is in the present case.
state energyp® and ¢?, respectively, and therefore the ex- ~ |, conclusion, we have studied analytically the hybrid
pression ofy is the same for both the choices of potential. collision of a one-dimensional stripe soliton and a two-

Finally, consider the collision between the needle and th%imensional needle in the framework of the Davey-
stripe, withS<0, shown in Fig. 4. For very large and nega- gie\wartson equation.
tive values ofz, the wall is far away from the origin and its
shape is not affected by the dromisee Fig. 4a)]; indeed it The work by E.D. was carried out within the framework
looks like the pure wall solution, with a NLS soliton cross of an agreement between Fondazione Ugo Bordoni and the
section profile. It then hits the dromion, goes through it, andtalian Communications Administration. A.D. gratefully ac-
separates again asbecomes large and positive, while its knowledges support from the Italian Ministero della Univer-
cross section asymptotically recovers its pure NLS solitorsita e della Ricerca Scientifica e Tecnologica and from the
profile. The only effect of the collision on the wall is a shift Centro Internacional de Ciencia€CIC) in Cuernavaca
of the phaseAy., and of the positioMT., which is ex-  (Mexico), and thanks Thomas Seligman for his hospitality
pressed by the relation expkAT.+iAy.)=[(A—p)(x  and Carlos Mejia Monasterio for his kind assistance.
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